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1 SUMMARY

In this paper validation and verification of a KCS
model in oblique seas is presented for five headings.
Validation is performed by comparing added resis-
tance, heave, roll and pitch motions with experi-
mental data. For each test case, grid refinement
study is carried out and the corresponding grid un-
certainty is calculated. Periodic uncertainty using
moving window FFT is calculated. The decompo-
sition model is based on SWENSE (Spectral Wave
Explicit Navier–Stokes Equations) method and im-
plicit relaxation zones, with embedded free surface
approach via implicit interface–corrected interpola-
tion schemes. The method provides one–cell–sharp
jump of dynamic pressure and density across the free
surface for arbitrary polyhedral grids. Implicitly re-
distanced Level Set equation is used for interface cap-
turing, while the k − ω SST model is used for tur-
bulence. The method is implemented in the Naval

Hydro pack, based on foam–extend, a fork of the
open source software OpenFOAM.

2 INTRODUCTION

With a decrease in CPU cost–performance ratio and
recent regulations regarding energy efficient marine
transport, the focus in marine CFD is shifting to more
complex flows including seakeeping and manoeuvring
[7, 12] of ships. Heave and pitch motions of a ship in
head waves are well investigated using CFD [10, 2],
although the emphasis nowadays is on the added re-
sistance of a ship in waves. Detailed validation and
verification of CFD simulations of ships in oblique
waves with variable heading are still to be investi-
gated.
This paper presents validation and verification for
seakeeping CFD simulations of a KCS in oblique
waves, where each of the five test cases has been car-
ried out, results compared to experimental data and
verified with grid refinement studies. Grid and pe-

riodic uncertainties are also calculated, and the em-
phasis is generally given to added resistance due to
its practical importance.
The paper is organised as follows. The decompo-
sition CFD model is briefly outlined, followed by a
brief description of uncertainty assessment. A global
overview of the results is given and the paper is final-
ized with a short conclusion.

3 APPROACH

The computational method used in this work is based
on the recently developed decomposition model for
naval hydrodynamics [14]. Solution decomposition
via SWENSE approach [3] ensures facilitated incident
wave transport, while the domain decomposition via
implicit relaxation zones [6] prevents wave reflection.
Implicitly redistanced Level Set method is used
for interface capturing [13], and the embedded free
surface approach is used to ensure infinitesimally
sharp interface for density and dynamic pressure.

In SWENSE, primitive variables are decomposed into
incident (potential) flow solution and perturbation
(diffracted) solution [3]:

ξ = ξI + ξD , (1)

where ξ represents an unknown field, with index
I denoting its potential flow incident part and
index D denoting the diffracted (perturbation)
part. Such decomposition allows one to solve for a
fully non–linear CFD solution for the perturbation
solution, treating the incident flow field explicitly.
Using ordinary second–order accurate convection
and time–derivative schemes for incident fields,
incident wave is easily propagated without excessive
numerical damping and need for finely resolved
grid in the far–field. Thus, the SWENSE approach
facilitates introduction of regular waves in the CFD
calculation.



In order to prevent wave reflection from the far–
field boundaries, implicit relaxation zones [6] are
introduced. The relaxation zones are positioned
near the far–field boundaries, where they damp
out the perturbation solution, thus leaving only
potential flow solution and preventing wave reflec-
tion. This damping is achieved on a matrix level
via additional sink terms with smooth blending us-
ing a spatially–defined exponential blending function.

Implicitly redistanced Level Set method [13], highly
suitable for SWENSE decomposition, is used for
interface capturing. Additional diffusion and
source/sink terms in the transport equation force
the Level Set field to remain a signed distance
function during its transport. Hence, no additional
redistancing via direct calculation or introduction of
the Eikonal redistancing equation is necessary.

Embedded free surface approach [15] allows one to
formulate a single two–phase incompressible system
of equations coupled at the water/air interface via
density and pressure jump conditions. Following
Huang et al. [4], jump conditions are used to de-
rive interface–corrected interpolation schemes for cells
in the vicinity of the free surface, ensuring one–cell–
sharp jump in density and dynamic pressure:

• Dynamic pressure jump condition:

p−d − p
+
d = −(ρ− − ρ+)g•x , (2)

where pd = p − ρg•x is the dynamic pressure,
and superscripts + and − denote field values in-
finitesimally close to the free surface from water
and air sides, respectively. Similarly, ρ− is the
constant air density and ρ+ is the constant wa-
ter density. g is the gravitational acceleration
and x is the free surface position vector.

• Dynamic pressure gradient jump condition:

1

ρ−
p−d −

1

ρ+
p+d = 0 . (3)

Reader is referred to Vukčević and Jasak [15] for a
detailed derivation of jump conditions, two–phase
governing equations and interface–corrected numeri-
cal schemes.

Turbulence is modelled with two–equation k−ω SST
eddy–viscosity model [8].
Second–order accurate polyhedral Finite Volume
(FV) method [5] is used to discretise governing equa-
tions. As the polyhedral FV method uses a compact
computational stencil, interface–corrected schemes

arising from dynamic pressure jump conditions (2)
and (3) are used only for cells in the immediate vicin-
ity of the free surface, while ordinary discretisation is
employed for fully submerged or fully dry cells. Time
derivative terms for perturbation fields are discretised
with first–order accurate implicit Euler scheme (due
to stability issues on some grids), while time deriva-
tive terms for explicit, incident fields are discretised
with a blend of Crank–Nicholson and Euler schemes.
This combination proved to be accurate in previous
studies. Convective terms for incident and diffracted
fields are discretised with linear and linear upwind
interpolation, respectively. All diffusion terms are
discretised using linear interpolation with limited
non–orthogonal correction in over–relaxed form [5].
Theoretically, second–order spatial accuracy and a
blend of first– and second–order temporal accuracy
is achieved.

Six–degrees–of–freedom (6 DOF) rigid body motion
equations [1] are introduced to model ship motion,
where the rotation is formulated in quaternion form
to prevent the gimbal lock phenomenon. After the
solution of 6 DOF equations, the whole computa-
tional grid is moved and grid motion fluxes are
calculated, where far–field relaxation zones naturally
account for moving grids.

6 DOF and grid motion are tightly coupled to the fluid
flow solution via forces and moments acting on the
body, prescribed velocity of the body and grid motion
fluxes. In order to resolve this coupling, fluid flow and
6 DOF equations are solved using Picard iterations.
First, interface capturing Level Set equation is solved,
followed by a momentum equation. The pressure–
velocity coupling for the current interface location is
resolved in the inner PISO loop with 3 or 4 correctors.
After obtaining a converged flow field including tur-
bulence, 6 DOF equations are solved and the grid is
moved accordingly. With updated grid motion fluxes
and velocity boundary conditions for the body, a new
estimate of the flow field is calculated. The procedure
is repeated at least 5 times to damp out oscillatory
convergence of rigid body accelerations.

4 VALIDATION

Validation of the model is performed by simulat-
ing five wave encounter angle cases: head waves
(C1), bow waves (C2), beam waves (C3), quarter-
ing waves (C4) and following waves (C5) requested
by the Workshop [9] for the KCS model at de-
sign Froude number, and comparing the added resis-
tance, heave, roll and pitch motions with experimen-



tal data. Reader is referred to Workshop’s website [9]
for detailed case settings and post processing instruc-
tions. Three unstructured grids with approximately
1 200 000, 1 900 000 and 3 200 000 cells are used. Each
grid extends approximately 1LPP in front of the ship,
2.5LPP behind the ship and 1.5LPP from the portside
and starboard. Results presented in this section are
obtained by performing moving window FFT on tem-
poral signals for the finest grid, while the verification
study with grid and periodic uncertainty estimates is
presented afterwards.

4.1 Added resistance

Mean value, first and second order harmonics of the
total resistance coefficient are presented in Fig. 1 for
all wave encounter angles χ (χ = 0◦ representing head
waves and χ = 180◦ representing following waves).
Mean value of the total resistance deviates 2% and
4% from experimental results for head and bow waves
respectively, while CFD significantly over–estimates
added resistance in beam, quartering and following
waves. Note that the measured experimental value for
the mean resistance is smaller for beam waves com-
pared to calm water condition, which is considered
peculiar. First order of the total resistance is sig-
nificantly higher in CFD compared to experimental
results, except for the beam waves case. Compar-
ing the head wave case from seakeeping in oblique
waves (KCS 2.11 case set), with the experimental re-
sults of seakeeping in head waves (KCS 2.10 case set,
[9]), measured first order of added resistance is signif-
icantly under–predicted.
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Figure 1: Total resistance coefficient harmonics, CT

for all wave encounter angles.

4.2 Heave motion

Mean value, first and second order harmonics of the
dimensionless heave are presented in Fig. 2 for all
wave encounter angles. The mean value of heave is
well predicted for head, bow and following waves,
with larger discrepancies for beam and quartering
waves. First order heave compares well with exper-
imental results for all wave wave encounter angles,
with average relative error of 13%, excluding the fol-
lowing wave case with large relative error due to small
measured motion. CFD slightly over–predicts heave
motions, except for the following waves case. Small
second order effects are also well predicted.
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Figure 2: Dimensionless heave harmonics, z/ζ for all
wave encounter angles.

4.3 Roll motion

Mean value, first and second order harmonics of the
dimensionless roll are presented in Fig. 3 for all wave
encounter angles. The mean value of roll in CFD does
not compare well to the experimental results, where
significant mean values are obtained for head and fol-
lowing wave cases. First order of the roll motion is
under–predicted for bow and following seas, while the
CFD simulation of beam waves over–predicts roll mo-
tion.

4.4 Pitch motion

Mean value, first and second order harmonics of the
dimensionless pitch are presented in Fig. 4 for all
wave encounter angles. Compared with the experi-
mental results, mean value of pitch motion has oppo-
site sign in CFD. It is possible this is a post process-
ing error, since experimental results report ”bow up”
condition for the calm water (C0) test case, whereas
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Figure 3: Dimensionless roll harmonics, φ/(kζ) for all
wave encounter angles.

other experimental tests with similar model report
”bow down” at design Froude number. The average
relative error for the first order pitch motion is ap-
proximately 16%, with the exception of beam waves
case where small pitch motions are measured both in
CFD and experiments. Considering their small am-
plitude, second order effects are in good agreement
with experimental results.
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Figure 4: Dimensionless pitch harmonics, θ/(kζ) for
all wave conditions.

5 VERIFICATION

We shall first examine periodic uncertainty and then
calculate grid uncertainty, for each test case.

5.1 Periodic uncertainty assessment

As the seakeeping CFD simulations are almost ex-
clusively carried out in the time domain, appropri-
ate number of periods needs to be calculated. In

highly non–linear flow problems such as seakeeping
of a ship in oblique waves, minimum number of re-
quired periods needs to be assessed. For this reason,
we perform a moving window FFT on each signal,
which provides useful information about convergence
of particular harmonics. The convergence for all vari-
ables (harmonic amplitudes and phases for resistance,
heave, roll and pitch, for all cases) is found to be os-
cillatory. Hence, we calculate periodic uncertainty in
the same way as the oscillatory grid uncertainty [11]:

UP = 0.5|SU − SL| , (4)

where SU is the maximum value, and SL is the
minimum value of the moving window FFT plot over
the final region used for post processing, usually last
5 to 10 encounter periods. For most of the phases in
oblique wave cases, a small drift (e.g. approximately
0.15 degrees for first order added resistance in bow
waves case) is revealed using moving window FFT,
hence the uncertainty calculation is not possible.

Periodic uncertainties for the mean and first order
harmonics of resistance, heave, roll and pitch are
smaller than 1% of the finest grid result for most
cases. Periodic uncertainties for higher order (third
and fourth) harmonics for added resistance are below
7%. Some higher order motion amplitudes have peri-
odic uncertainties of up to 65%, e.g. fourth order roll
motion in bow waves. However, this is expected as the
measured CFD value of 4th order roll is 3 orders of
magnitude smaller than corresponding first order. Pe-
riodic uncertainties for higher order harmonics could
be lowered by simulating more encounter periods.

5.2 Grid uncertainty assessment

Grid convergence and uncertainty is assessed follow-
ing [10], using results from 3 (non–systematically) re-
fined grids. A mixture of monotonically–, oscillatory–
and non–converging solutions is obtained as in previ-
ous studies concerning seakeeping of the KCS ship
[10], hence the grid uncertainty is estimated as a dif-
ference in maximum and minimum solutions:

UG = |SU − SL| , (5)

5.2.1 Added resistance grid uncertainties

The average grid uncertainty UG for the mean value
of resistance is approximately 10% of the finest grid
result. Grid uncertainty for the first order harmonic
of the resistance is less than 3%, except for the beam
waves C3 case where UG = 59%.



5.2.2 Heave grid uncertainties

For the mean value of heave, grid uncertainty ranges
from 2% for head waves C1 case to 27% for quarter-
ing waves C4 case. Grid uncertainties for first order
harmonics of heave are smaller than 2%, except for
the following waves case where the grid uncertainty
is 18%.

5.2.3 Roll grid uncertainties

Mean value of roll has grid uncertainties of 7% for bow
waves and 3% for quartering waves. Beam waves case
has high grid uncertainty of 63%, which should be fur-
ther explored. Average grid uncertainty for first or-
der roll motion for bow, beam and quartering waves is
approximately 4%, with higher uncertainties in head
and following waves due to negligible roll response.

5.2.4 Pitch grid uncertainties

Grid uncertainties for first order pitch motion are be-
low 2%, except for the beam waves case with small
pitch response. Grid uncertainties for mean values
are 6% and 2% for quartering and following waves,
respectively, with higher values for other cases (up
to 63% for bow waves), caused by small mean pitch
motion.

6 HARDWARE AND SIMULATION TIMES

Simulations were performed on a cluster with 7 nodes:
CPU - 2x Intel Xeon E5-2637 v3 4-core, 3.5 GHz,
15MB L3 Cache, DDR4-2133.
As an example, the finest grid (3.2 million cells) sim-
ulation of the bow waves case has been performed us-
ing 56 cores. 7 motion correctors were used with fixed
time step of 0.004 s corresponding to approximately
225 time steps per encounter period. Maximum CFL
number was ranging from 55 to 70 during the simu-
lation. Simulation lasted 40.2 hours for 60 encounter
periods, equalling 40 minutes of clock time per en-
counter period.
The most computationally expensive simulation has
been the following wave test case because the en-
counter period is highest. With same time–step and
number of cores as in the bow waves case, it took 4.5
hours per encounter period, approximately 104 hours
for 22 encounter periods. It should be noted that
for this test case, a significant amount of CPU time
has been spent on output operations for visualisation
purposes.

7 CONCLUSION

This paper describes a detailed validation and veri-
fication of the decomposition model with embedded
free surface approach for seakeeping simulations in
oblique waves. The computational model is imple-
mented in the Naval Hydro pack based on foam–
extend C++ library, a community driven fork of
OpenFOAM software.
Five test cases of the KCS ship model heaving, rolling
and pitching in oblique seas are simulated: head, bow,
beam, quartering and following waves. Validation is
performed by comparing mean to fourth order har-
monics of added resistance, heave, roll and pitch mo-
tions to the experimental data, while the verification
is performed via grid refinement studies and periodic
uncertainty assessment using moving window FFT.
Compared with experimental results, the mean value
of the added resistance is well predicted for the head
and bow waves, while beam, quartering and follow-
ing waves indicate larger discrepancies. First order
amplitudes of the added resistance are significantly
over–predicted by the CFD. CFD simulations were
performed with surge fixed condition as recommended
by the Workshop organisers, while the experiments
were performed using surge free mount system con-
sisting of a spring and a damper, which we believe
is the main reason for discrepancies. Periodic uncer-
tainties for the added resistance coefficient are smaller
than 1% for all mean, first and second orders, while
for the third and fourth orders the largest periodic
uncertainty is approximately 7% of the fine grid so-
lution. Grid uncertainties for the mean value of the
added resistance are between 6% and 13%. First or-
der added resistance coefficients have periodic uncer-
tainties below 3%, except for the beam waves case
with high periodic uncertainty of 58%.
Heave, roll and pitch motions are generally in bet-
ter agreement with experimental results compared to
the added resistance coefficient. The most notable
discrepancies within motions between present CFD
results and experimental results are:

1. Mean value of heave motion for beam and bow
waves have different signs,

2. Mean value of roll motion in bow waves has dif-
ferent sign,

3. First order roll motion is under–predicted in
CFD for bow waves and over–predicted for beam
waves,

4. Mean value of pitch motion has different signs
for all wave conditions.



As reported, periodic and grid uncertainties for the
motions are low, considering the complexity of the
cases and usage of non–systematically refined un-
structured grids.
Authors hope to investigate the above mentioned dis-
crepancies for motions and added resistance at the
Workshop.
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